

What's New In Mental Health

Hallucinogens for the Depressed,
Anti-Hallucinogens for the Psychotic

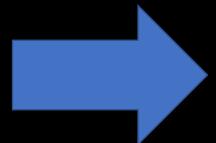
Luigi Cardella, MD 05/12/2023

Disclosures

None

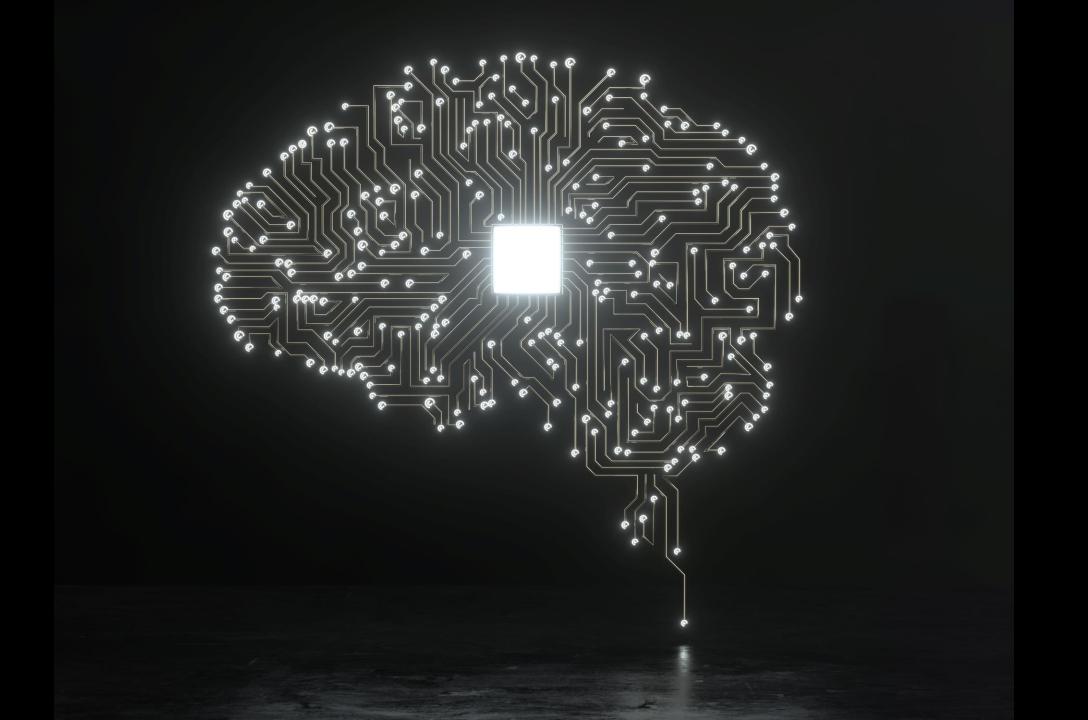
- Pharmaceutical manufacturer reference only for treatments in development
- Generic names for all medications used throughout, but provided experimental names of investigational treatments for ease of reference

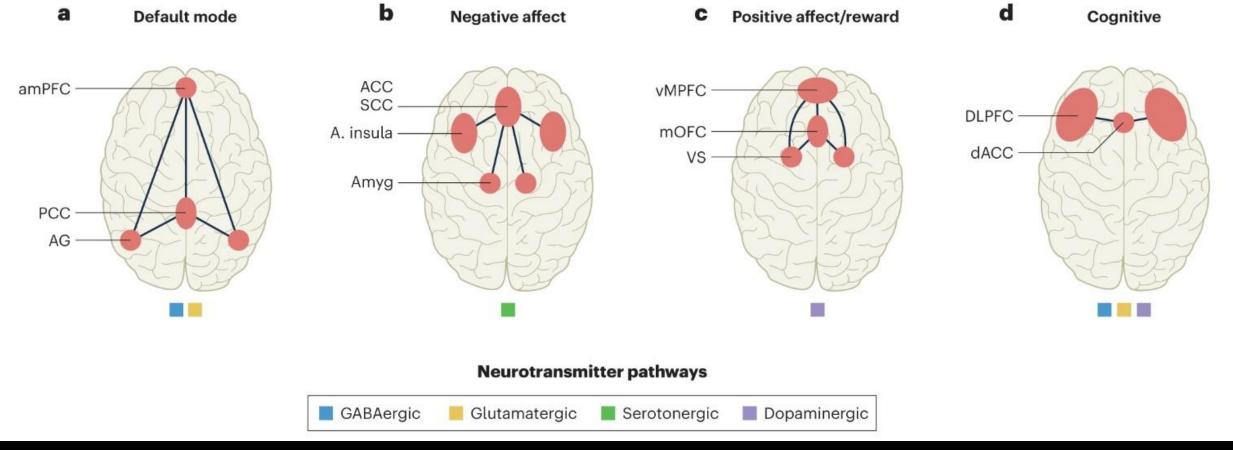
Preface

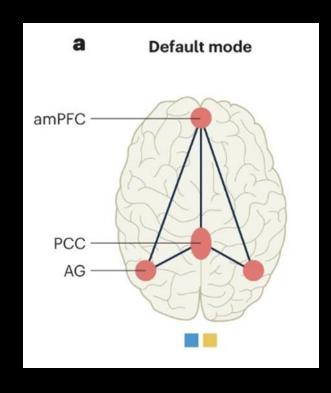

- Dozens of ongoing clinical trials for new treatments and several hundred ongoing studies for medications and non-medications to treat psychiatric illness
 - Medications further along in clinical trials, appear the most promising, or have atypical mechanisms of action
- Focus will be on treatments, including new research
 - Major depressive disorder (to represent mood disorders)
 - Schizophrenia (to represent thought disorders)

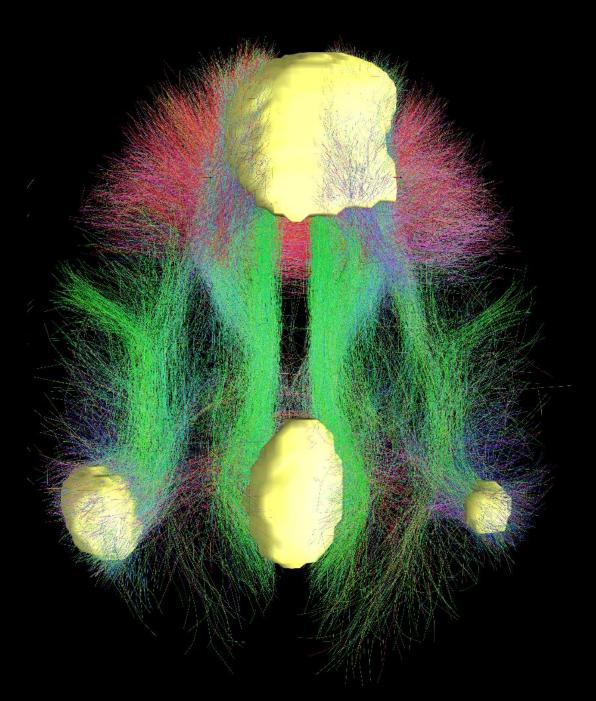

Goals & Objectives

- Discuss and review recently FDA approved medications and treatments for major depressive disorder, including for treatment resistant depression
- Discuss potential treatments that have "novel" mechanisms of action for major depressive disorder, including for treatment resistant depression
- Discuss potential treatments that have "novel" mechanisms of action for schizophrenia with emphasis on negative symptoms and cognitive symptoms


The Concept of Psychiatric Illness

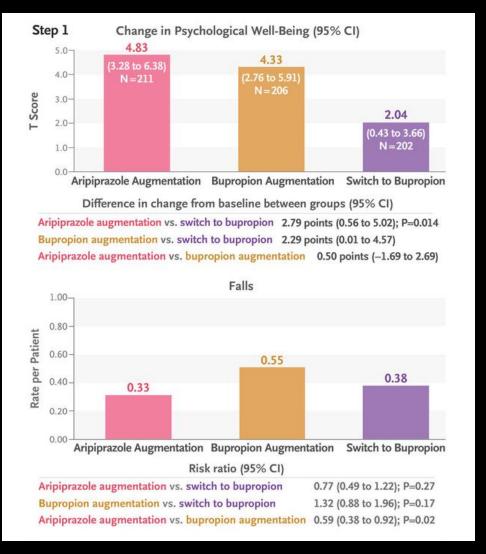






Andreas Horn, MD, PhD Wikipedia

Example of Targeting Medications


- DMN hypoactivity correlated with persistent depressive disorder
- In late-life depression, improvement with escitalopram results in improved posterior node functioning
- In late-life depression with anxiety, antidepressants normalize function of frontal nodes

Medications for Major Depressive Disorder

What's New?


Augmentation in Geriatric Treatment Resistant Depression: The OPTIMUM Trial

- Lenze et al. (2023) used patient recommended psychological wellbeing as an outcome measure to study treatment resistant depression in patients older than 60
- Step 1: add aripiprazole OR add bupropion OR switch to bupropion
- Step 2: add lithium OR switch to nortriptyline
 - Equivalent regarding effectiveness and safety

Cariprazine

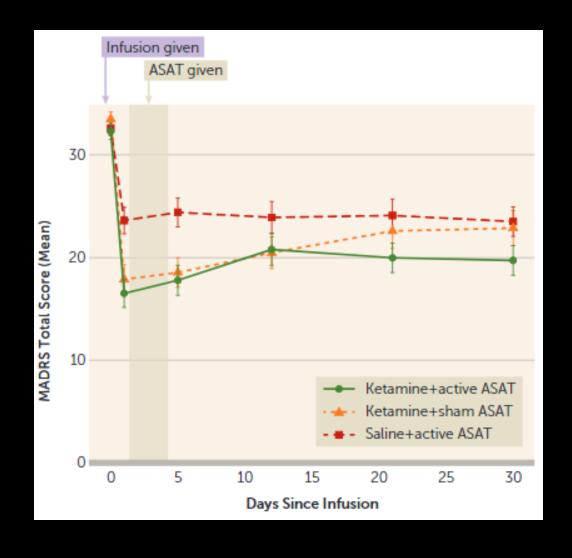
- FDA approved for adjunctive treatment of MDD in December 2022
- Partial agonism $D_3 > D_2$
- Randomized, double-blind, placebo-controlled phase 3 study of 757 patients with MDD with inadequate response to 1-3 antidepressants in the current episode (Sachs et al. 2023)
 - Adjunctive cariprazine 1.5 mg/day showed significant benefit
 - Adjunctive cariprazine 3 mg/day did not
 - No significant remission in either group
 - Akathisia was most common adverse effect
 - 7.9% in 3 mg group, about that for aripiprazole and brexpiprazole

Dextromethorphan-Bupropion

- FDA approved for MDD in August 2022
 - Results for TRD encouraging but did not separate from bupropion
- Non-competitive NMDA receptor antagonism
 - Sigma-1 receptor agonism
 - Inhibition of SERT, NET, and DAT
- Use of bupropion for its CYP2D6 inhibition
- Most common adverse effect dizziness (20%) and nausea (16.7%)
 - No psychotomimetic effects

Dextromethorphan-Bupropion

- In the larger of two double-blind phase 3 trials (GEMINI, Iosifescu et al. 2022)
 - Greater MADRS total score reductions vs placebo beginning at week 1
 - Earlier remission significant at week 2 (39.5% vs 17.3%)
 - Improvement in functional disability beginning at week 2


"Th78blue" Wikipedia

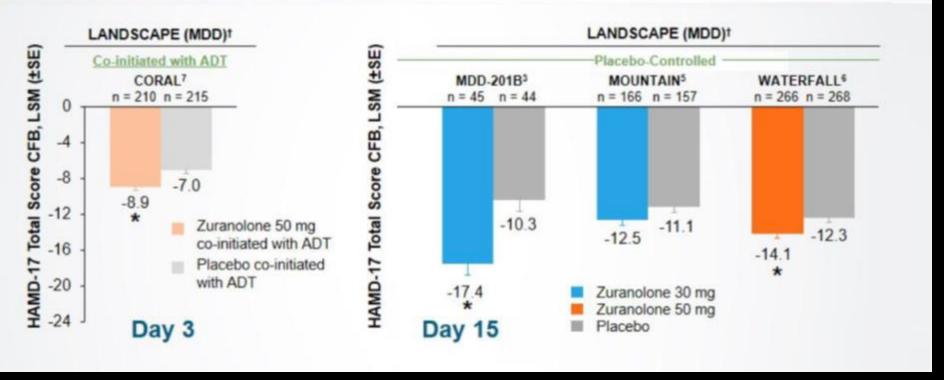
Ketamine

- Esketamine nasal spray was the first non-monoaminergic antidepressant approved by the FDA
 - For adjunctive treatment in TRD in 2019
 - For MDD with acute suicidal ideation or behavior in 2020
- Durability problem
 - Continued esketamine (or ketamine) administration appears to help the durability effect seen initially with ketamine studies

Ketamine's Durability Problem (Price et al. 2022)

- Automated Self-Association Training (ASAT) with ketamine
 - A self-training computerized program that promotes, via classical conditioning principles, positive self-associations
- Antidepressant effects remained stable 30 days post-infusion
 - Statistically significant but clinically significant?

Ketamine vs ECT

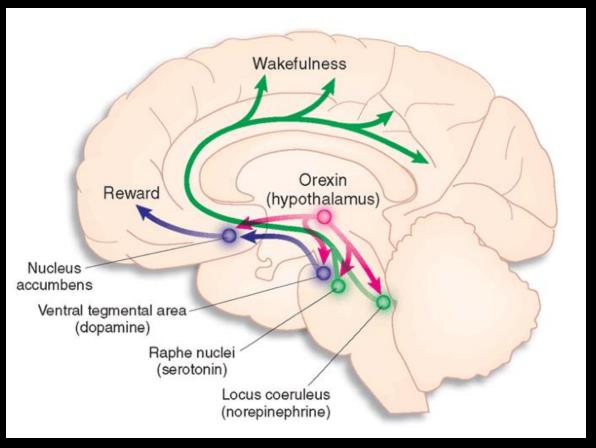

- 6 clinical trial studies, 340 patients, all ECT candidates (Rhee et al. 2022)
 - Ketamine inferior to ECT re: improvement of depressive symptoms
- Equivalent antisuicidal effects (Kheirabadi et al. 2020)
- Equivalent serious adverse events (Ekstrand et al. 2022)
- Neurocognitive performance with ketamine > ECT (Basso et al. 2020)
 - However, final measurement of the study done one day after final ECT
- One study showed after 3 months depression severity was equivalent (Kheirabadi et al. 2019)
- Remission rates equivalent at 12 months (Ekstrand et al. 2022)

Zuranolone (SAGE-217)

- Neuroactive steroid that modulates resting DMN connectivity via GABA_A excitatory-inhibitory balance
- Administered in pill form once daily for 2 weeks

Zuranolone (SAGE-217)

Primary Endpoints in Zuranolone Placebo-Controlled Trials



Zuranolone (SAGE-217)

- Shown to improve measures of functioning and well-being at Day 15 and Days 42-45
- SHORELINE Study demonstrated that median days for repeat treatment course was 135 days for 30 mg and 249 days for 50 mg
- Most common adverse effects: headache, somnolence, dizziness, nausea, sedation
 - No emerging suicidality, withdrawal, weight gain, or sexual dysfunction
- New Drug Application submitted, has been granted priority review

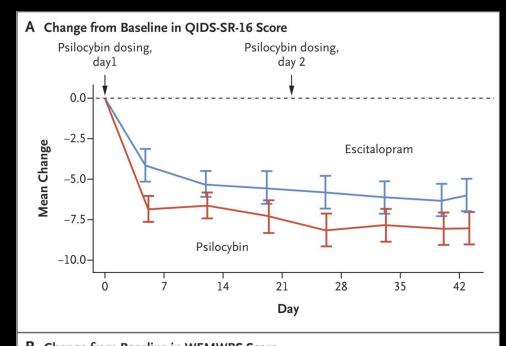
Orexin/Hypocretin

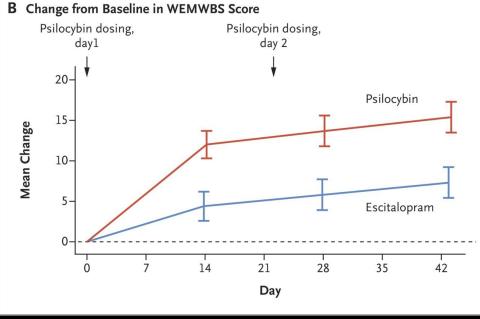
- Dual Orexin Receptor Antagonists:
 - Suvorexant FDA approved for insomnia in 2014
 - Lemborexant in 2019
 - Daridorexant in 2022
- Those clinical trials excluded depression

Seltorexant (JNJ-42847922)

- Multicenter, international, double-blind, placebo controlled, parallel group phase 2 study in patients with moderate MDD and failure to achieve remission with between 1 and 3 preselected SSRIs or SNRIs (Savitz et al. 2021)
- No dose-response relationship was significant though there was a <u>trend</u> for 20 mg dose >> 10 mg and > than 40 mg
- When separated by presence or absence of moderate to severe insomnia:
 - At week 3, with moderate to severe insomnia, 20 mg > both 10 mg and 40 mg
 - At week 6, with moderate to severe insomnia, 20 mg ≈ 40 mg > 10 mg
 - At week 6, without moderate to severe insomnia, all doses ≈ placebo
- Phase 3 studies will look at 20 mg dose in MDD + mod/sev insomnia + failure to respond to 1-3 medications

Psychedelics


mushroomobserver.org

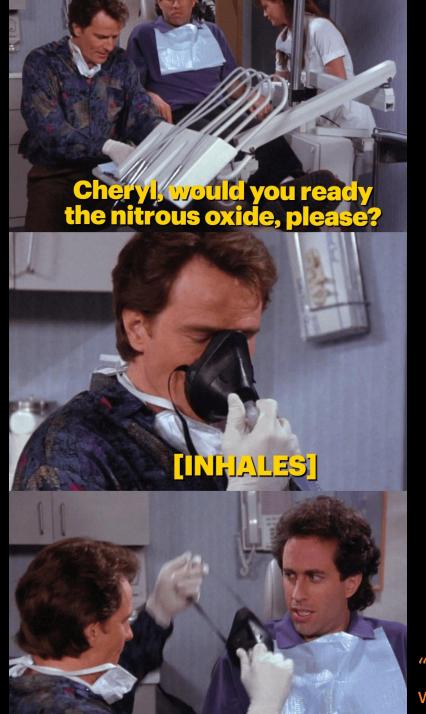

Psilocybin

• Open-label study (Carhart-Harris et al. 2018) showed 6-month sustained antidepressant response to two doses of psilocybin in TRD (N=26)

Psilocybin

- Double-blind RCT in MDD (N=59) (Carhart-Harris et al. 2021)
 - Psilocybin 25 mg q3weeks x2 + placebo daily
 - Psilocybin 1 mg q3weeks x2 + escitalopram 10 mg daily x3 weeks and then 20 mg daily x3 weeks
 - No difference in self-reported depressive symptoms
 - Essentially equivalent results*

Psilocybin

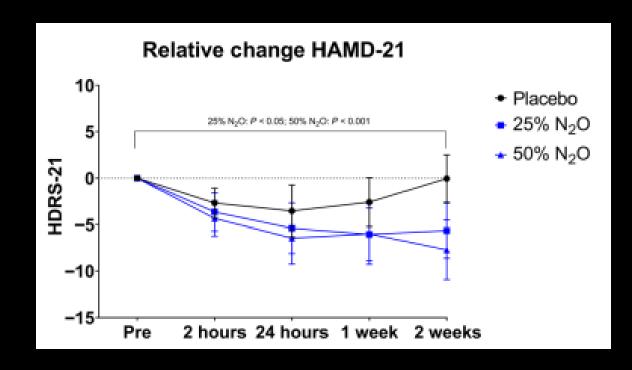

- Phase 2 double-blind RCT in moderate to severe TRD (N=79) (Goodwin et al. in 2022)
 - Single dose of psilocybin 25 mg, 10 mg, or placebo
 - Depressive symptom improvement and remission significant for 25 mg only
 - At 3 weeks, response rate 37%, remission 29%

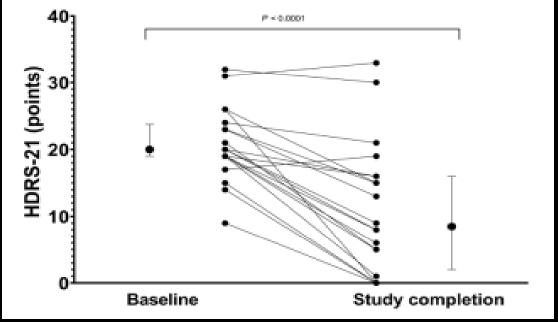
Psilocybin -- it's not all fun(gi) and games...

- A survey among recreational psilocybin users (Carbonaro et al. 2016)
 - 39% of respondents rated psychedelic use "among the top five most challenging experiences of his/her lifetime"
 - 11% had put themselves or others at risk of physical harm while on psilocybin
- In a study by Davis et al. (2021) in which psilocybin was shown to reduce symptoms of MDD
 - A majority of patients experienced challenging psychological states, from "sadness" and "grief" to "emotional suffering" and "despair" during the dosing session
 - 31% of patients were "afraid that the state I was in would last forever"

Psilocybin -- it's not all fun(gi) and games...

- Headache, nausea, dizziness, fatigue
- Numerically higher incidence of suicidal ideation or self-injurious behavior


"u/HurricaneBetsy"
www.reddit.com/r/seinfeld/


Nitrous Oxide

- 1-hour inhalation of 50% N_2O caused rapid antidepressant effects in TRD (N=20) (Nagele et al. 2015)
 - Limited to 24 hrs follow-up, high dose

Nitrous Oxide

- Phase 2 trial, Nagele et al. (2021) studied severe resistant depression (avg 17.5 lifetime years of MDD and median 4.5 drug trials) (N=24)
 - Single, 1-hour inhalation of N₂O at either 25% or 50% versus placebo

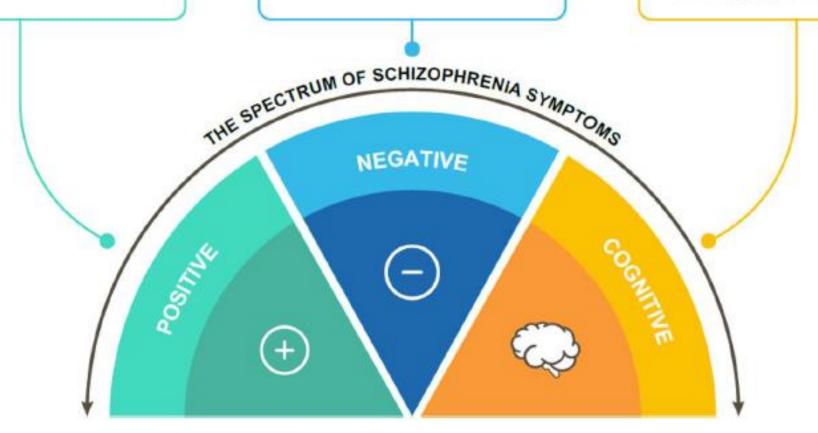
Medications with Less Compelling Evidence

- Anti-inflammatory medications
 - Celecoxib, minocycline, sirukumab
- Esmethadone
 - Two failed phase 3 trials

Medications for Schizophrenia

What's New?

Positive symptoms: Hallucinations Delusions

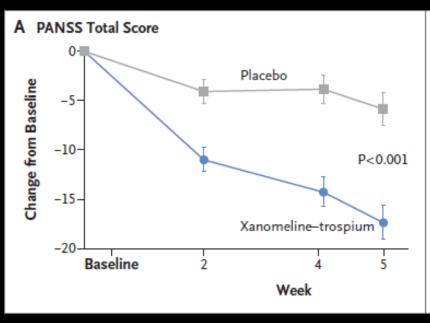

- Disorganised speech
- Agitative/repetitive movements
- · Abnormal behaviour

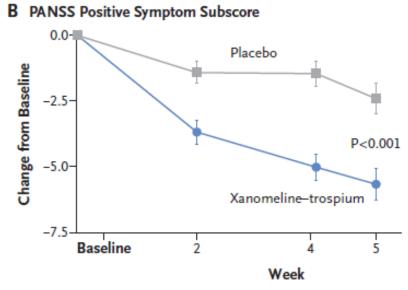

Negative symptoms:

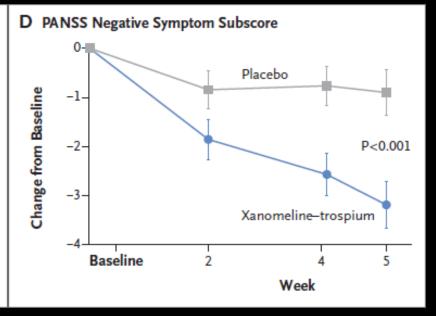
- Flattened affect
- Avolition (reduced motivation)
- Asociality (e.g. social isolation)
- Anhedonia (lack of pleasure)
- Alogia (lack of speech)

Cognitive symptoms:

- Poor memory
- Disorganised thinking
- Low attention
- Limited social cognition
- · Poor working memory and comprehension
- Difficulty expressing thoughts

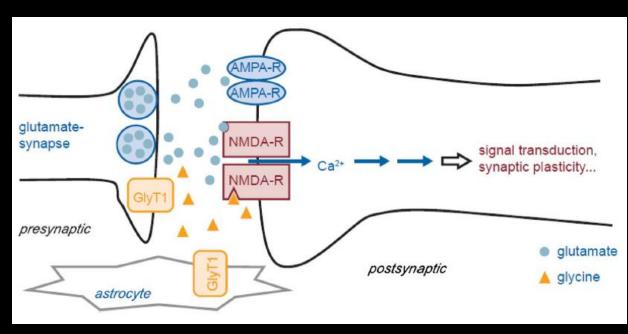



Xanomeline


- Derivative of arecoline, mAChR (M₁/M₄) agonist
 - M₄ receptors reduce downstream DA release
- Xanomeline improved cognition in patients with Alzheimer's disease (Bodick et al. 1997)
 - Serendipitously, they also found rapid and dose-dependent reduction in psychosis
 - Substantial, limiting cholinergic side effects
- In a phase 2 trial xanomeline improved psychosis and cognition in patients with schizophrenia (Shekhar et al. 2008)
 - Still problem of cholinergic side effects

- Central M₁/M₄ agonism via xanomeline
 - Xanomeline appears to selectively target VTA DA neurons but not SN DA neurons
- Peripheral anticholinergic activity via trospium

• Phase 2 clinical trial (Brannan et al. 2021)


- Sauder et al. (2022) performed a post-hoc analysis of phase 2 study data (double-blind, placebo controlled RCT; EMERGENT-1)
- With pretreatment cognitive impairment
 - Cognitive performance improved with a medium-large effect size both relative to baseline and compared to placebo
- Without pretreatment cognitive impairment
 - No cognitive performance improvement was noted

- Phase 3 EMERGENT-2 measures at week 5
 - PANSS total score significant (beginning at week 2) (effect size 0.61)
 - PANSS positive score significant (beginning at week 3)
 - PANSS negative score significant (beginning at week 4)

- Phase 3 EMERGENT-3 measures at week 5
 - PANSS total score significant (beginning at week 2) (effect size 0.60)
 - PANSS positive score significant at week 5
 - PANSS negative score significant at week 4 but not week 5

- Most common adverse effects were all mild to moderate
 - Nausea, dyspepsia, vomiting, constipation, headache, hypertension, diarrhea, and insomnia
 - No EPS, no risk of tardive dyskinesia?
- Long-term safety data pending from EMERGENT-4 and -5 trials
- New Drug Application submission planned imminently

NMDA Receptors in Schizophrenia

Rosenbrock et al. 2023

- NMDA-R dysfunction contributes to cognitive disturbance and psychosis
- Glycine is a co-agonist for NMDRs in excitatory glutamatergic neurotransmission
- GlyT1 is the primary transporter for the release and reuptake of glycine

Iclepertin (BI 425809)

- GlyT1 inhibitor
- Multicenter, double-blind, placebo-controlled RCT phase 2 study across 11 countries (Fleischhacker et al. 2021)
 - 509 patients with schizophrenia assigned to 2 mg, 5 mg, 10 mg, 25 mg, placebo given daily for 12 weeks in addition to their stable antipsychotic
 - Treatment with iclepertin 10 mg or 25 mg demonstrated the greatest improvements in cognition but 25 mg not better than 10 mg
- Three international phase 3 trials underway
- FDA designation of breakthrough therapy

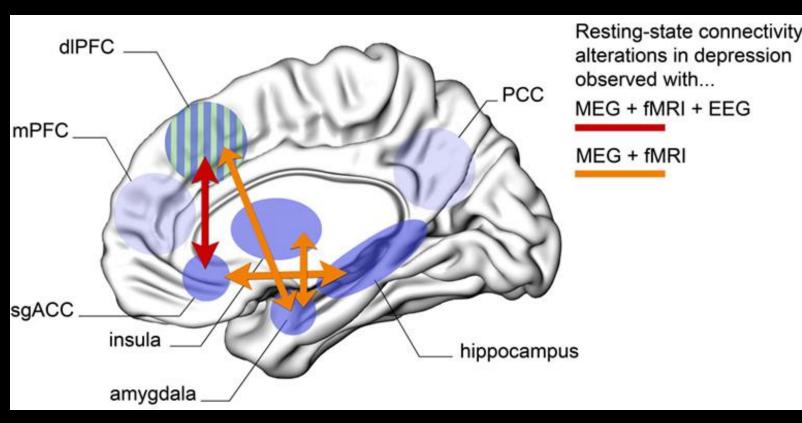
Transcranial Magnetic Stimulation for Major Depressive Disorder

What's New?

Transcranial Magnetic Stimulation (TMS)

- Non-invasive use of an alternating magnetic field to stimulate the brain
 - Magnetic field → electric field
- Synaptic plasticity with TMS is NMDA-R dependent

Transcranial Magnetic Stimulation (TMS)


- 30-45 min 10 Hz treatment sessions daily for 4-6 weeks
 - Evidence suggests that 2-15 treatments/day at 10 Hz is not inferior to once per day protocols
- Most common adverse effects are headache and scalp discomfort
- Durability of response is "good" after 1 year (approaching 50%)

Transcranial Magnetic Stimulation (TMS)

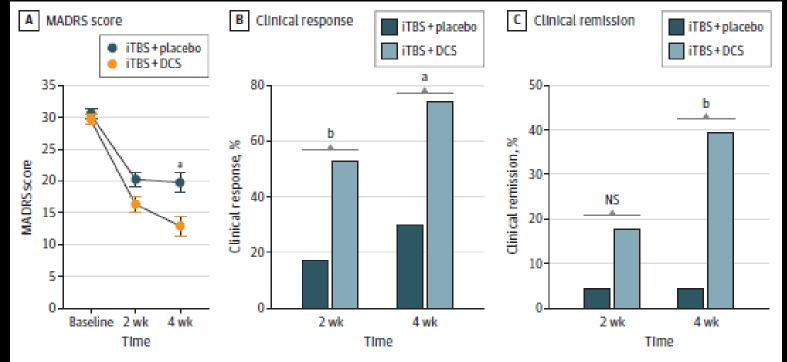
- sgACC is overactive in depression
- sgACC anticorrelated with DLPFC

 Left DLPFC is targeted in TMS

Theta-Burst Stimulation (TBS)

- TBS uses 50 Hz with a much shorter treatment time (just over 3m) and is non-inferior to 10 Hz TMS (THREE-D trial, Blumberger et al. 2018)
 - TBS mimics endogenous theta rhythms → LTP
 - Response rate of 49% and remission rate of 32% for TRD

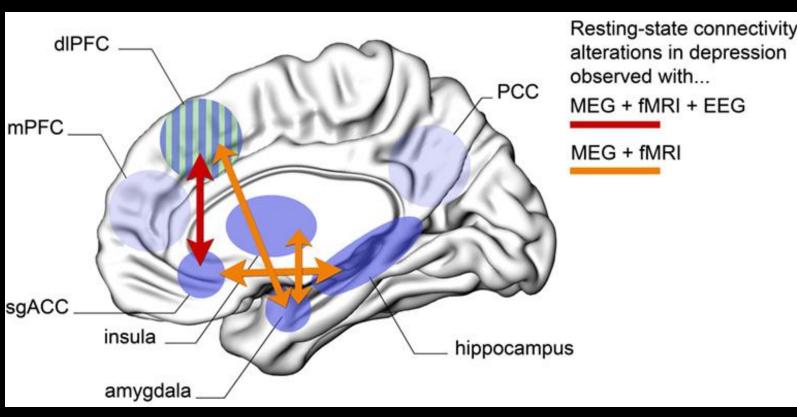
TMS for Geriatric Depression (Cappon et al. 2021)


- Three of the six RCTs that reported on response rates found significant difference with TMS versus sham
- Three of the five RCTs that reported on remission rates found significant difference with TMS versus sham
- Considerable variability in response and remission rates
 - Normal brain related atrophy?
 - Different methodologies between studies
 - Pulse count lower than FDA protocol
 - *Older studies tended to have less impressive results

iTBS for Geriatric Depression (Cristancho et al. 2020)

- Open label trial, 13 patients with geriatric depression treated with daily iTBS sessions over 4 weeks
 - 1/3 response rate
 - 1/3 remission rate

Improving TMS with Medications?


- Cole et al. 2022 studied D-cycloserine with iTBS for patients 18-65 yo with moderately severe MDD and failure of at least 1 antidepressant trial (but not more than 4) (N=50)
 - D-cycloserine for the first 2 of 4 weeks (versus placebo)

Improving TMS with Radiology?

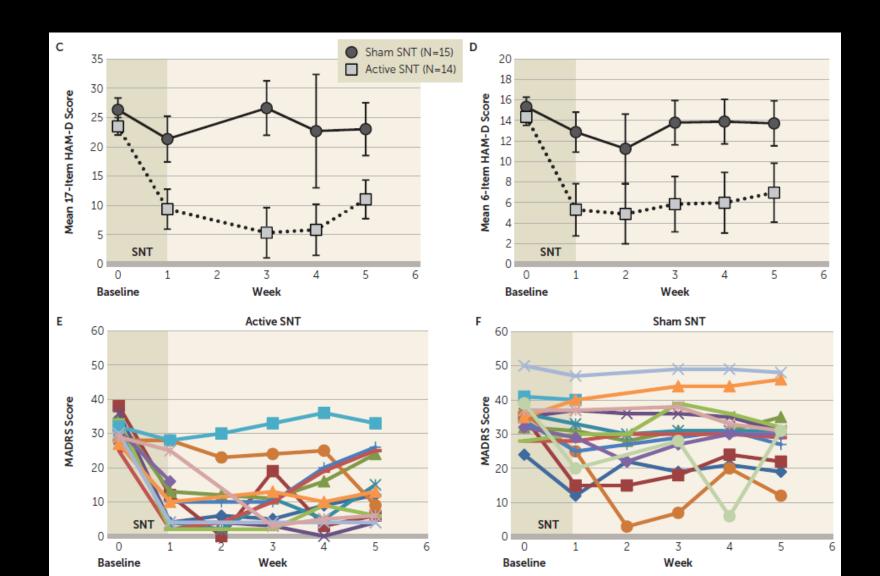
Greater

 anticorrelation
 between the left
 DLPFC and the sgACC
 predicts response to
 TMS

Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT -> SNT)

- 1. iTBS (90,000 pulses)
- 2. Multiple iTBS sessions per day, optimally spaced
 - 1 hr spacing for 10 hrs/day for 5 days (1,800 pulses/session x 10 sessions)
- 3. Higher overall pulse dose of stimulation
 - 90% rMT
- 4. Personalized targeting via imaging (fcMRI)

 Open-label trials of the SNT protocol have shown a remission rate of approximately 90% even in TRD



www.localite.de www.neurolite.ch

SNT Double-Blind RCT (Cole et al. 2022)

- Moderate to severe depressive episodes based on scales
- Moderate to severe levels of treatment resistance
- The trial was halted at the midpoint because the planned interim analysis demonstrated a large effect size of active compared with sham treatment (Cohen's d>0.8)

SNT Double-Blind RCT (Cole et al. 2022)

SNT Double-Blind RCT (Cole et al. 2022)

Active SNT Group	Response Rate	Remission Rate
0 weeks after treatment	71.4%	57.1%
1 week after treatment	77.8%	66.7%
2 weeks after treatment	84.6%	53.8%
3 weeks after treatment	69.2%	61.5%
4 weeks after treatment	69.2%	46.2%

FDA approved this protocol in October 2022

Transcranial Magnetic Stimulation for Schizophrenia

What's New?

Negative Symptoms in Schizophrenia

- fMRI studies have demonstrated that negative symptoms are a result of dysfunctional connectivity between the DLPFC and VTA (the mesocortical pathway)
- Excitatory TMS protocols (e.g., 10 Hz rTMS, iTBS) over the left DLPFC had the highest probability of reducing negative symptom severity (Tseng et al. 2022)
 - Also considered other NIBS protocols not covered in this talk

TMS for Negative Symptoms of Schizophrenia

(Lorentzen et al. 2022)

- Systematic review and meta-analysis
 - 1714 studies screened → 57 studies included
- Significant effect of active TMS on negative symptoms compared to sham treatment (SMD = 0.41, NNT = 5)
- Considerable heterogeneity, but it appeared that >1 Hz stimulations and targeting the L-DLPFC may be more effective protocols

iTBS for Neurocognitive Dysfunction in Older Adults with Schizophrenia (Zhang et al. 2023)

Zhao et al. 2021

- iTBS superior to sham treatment in improving neurocognitive function measured by MDRS-2 and subscales
 - Attention
 - Initiation/perseveration
 - Conceptualization
 - Construction
 - Memory

Zhen et al. 2018

 Mixed results from Digit span test; Spatial span test; WCST

Goals & Objectives

- Discuss and review recently FDA approved medications and treatments for major depressive disorder, including for treatment resistant depression
- Discuss potential treatments that have "novel" mechanisms of action for major depressive disorder, including for treatment resistant depression
- Discuss potential treatments that have "novel" mechanisms of action for schizophrenia with emphasis on negative symptoms and cognitive symptoms

- Alamian, G., Hincapié, A. S., Combrisson, E., Thiery, T., Martel, V., Althukov, D., & Jerbi, K. (2017). Alterations of Intrinsic Brain Connectivity Patterns in Depression and Bipolar Disorders: A Critical Assessment of Magnetoencephalography-Based Evidence. Frontiers in psychiatry, 8, 41. https://doi.org/10.3389/fpsyt.2017.00041
- Basso, L., Bönke, L., Aust, S., Gärtner, M., Heuser-Collier, I., Otte, C., Wingenfeld, K., Bajbouj, M., & Grimm, S. (2020). Antidepressant and neurocognitive effects of serial ketamine administration versus ECT in depressed patients. Journal of psychiatric research, 123, 1–8. https://doi.org/10.1016/j.jpsychires.2020.01.002
- Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P., Knyahnytska, Y., Kennedy, S. H., Lam, R. W., Daskalakis, Z. J., & Downar, J. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet (London, England), 391(10131), 1683–1692. https://doi.org/10.1016/S0140-6736(18)30295-2
- Bodick, N. C., Offen, W. W., Shannon, H. E., Satterwhite, J., Lucas, R., van Lier, R., & Paul, S. M. (1997). The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer disease and associated disorders, 11 Suppl 4, S16–S22.
- Brannan, S. K., Sawchak, S., Miller, A. C., Lieberman, J. A., Paul, S. M., & Breier, A. (2021). Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. The New England journal of medicine, 384(8), 717–726. https://doi.org/10.1056/NEJMoa2017015

- Cappon, D., den Boer, T., Jordan, C., Yu, W., Metzger, E., & Pascual-Leone, A. (2022). Transcranial magnetic stimulation (TMS) for geriatric depression. Ageing research reviews, 74, 101531. https://doi.org/10.1016/j.arr.2021.101531
- Carbonaro, T. M., Bradstreet, M. P., Barrett, F. S., MacLean, K. A., Jesse, R., Johnson, M. W., & Griffiths, R. R. (2016). Survey study of challenging experiences after ingesting psilocybin mushrooms: Acute and enduring positive and negative consequences. Journal of psychopharmacology (Oxford, England), 30(12), 1268–1278. https://doi.org/10.1177/0269881116662634
- Carhart-Harris, R. L., Bolstridge, M., Day, C. M. J., Rucker, J., Watts, R., Erritzoe, D. E., Kaelen, M., Giribaldi, B., Bloomfield, M., Pilling, S., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Curran, H. V., & Nutt, D. J. (2018). Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology, 235(2), 399–408. https://doi.org/10.1007/s00213-017-4771-x
- Carhart-Harris, R., Giribaldi, B., Watts, R., Baker-Jones, M., Murphy-Beiner, A., Murphy, R., Martell, J., Blemings, A., Erritzoe, D., & Nutt, D. J. (2021). Trial of Psilocybin versus Escitalopram for Depression. The New England journal of medicine, 384(15), 1402–1411. https://doi.org/10.1056/NEJMoa2032994
- Cole, E. J., Phillips, A. L., Bentzley, B. S., Stimpson, K. H., Nejad, R., Barmak, F., Veerapal, C., Khan, N., Cherian, K., Felber, E., Brown, R., Choi, E., King, S., Pankow, H., Bishop, J. H., Azeez, A., Coetzee, J., Rapier, R., Odenwald, N., Carreon, D., ... Williams, N. R. (2022). Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. The American journal of psychiatry, 179(2), 132–141. https://doi.org/10.1176/appi.ajp.2021.20101429

- Cole, J., Sohn, M. N., Harris, A. D., Bray, S. L., Patten, S. B., & McGirr, A. (2022). Efficacy of Adjunctive D-Cycloserine to Intermittent Theta-Burst Stimulation for Major Depressive Disorder: A Randomized Clinical Trial. JAMA psychiatry, 79(12), 1153–1161. https://doi.org/10.1001/jamapsychiatry.2022.3255
- Correll, C. U., Solmi, M., Cortese, S., Fava, M., Højlund, M., Kraemer, H. C., McIntyre, R. S., Pine, D. S., Schneider, L. S., & Kane, J. M. (2023). The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World psychiatry: official journal of the World Psychiatric Association (WPA), 22(1), 48–74. https://doi.org/10.1002/wps.21056
- Cristancho, P., Kamel, L., Araque, M., Berger, J., Blumberger, D. M., Miller, J. P., Barch, D. M., & Lenze, E. J. (2020). iTBS to Relieve Depression and Executive Dysfunction in Older Adults: An Open Label Study. The American journal of geriatric psychiatry: official journal of the American Association for Geriatric Psychiatry, 28(11), 1195–1199. https://doi.org/10.1016/j.jagp.2020.03.001
- Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H., & Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA psychiatry, 78(5), 481–489. https://doi.org/10.1001/jamapsychiatry.2020.3285
- Ekstrand, J., Fattah, C., Persson, M., Cheng, T., Nordanskog, P., Åkeson, J., Tingström, A., Lindström, M. B., Nordenskjöld, A., & Movahed Rad, P. (2022). Racemic Ketamine as an Alternative to Electroconvulsive Therapy for Unipolar Depression: A Randomized, Open-Label, Non-Inferiority Trial (KetECT). The international journal of neuropsychopharmacology, 25(5), 339–349. https://doi.org/10.1093/ijnp/pyab088

- Elbau, I. G., Lynch, C. J., Downar, J., Vila-Rodriguez, F., Power, J. D., Solomonov, N., Daskalakis, Z. J., Blumberger, D. M., & Liston, C. (2023). Functional Connectivity Mapping for rTMS Target Selection in Depression. The American journal of psychiatry, 180(3), 230–240. https://doi.org/10.1176/appi.ajp.20220306
- Fleischhacker, W. W., Podhorna, J., Gröschl, M., Hake, S., Zhao, Y., Huang, S., Keefe, R. S. E., Desch, M., Brenner, R., Walling, D. P., Mantero-Atienza, E., Nakagome, K., & Pollentier, S. (2021). Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. The lancet. Psychiatry, 8(3), 191–201. https://doi.org/10.1016/S2215-0366(20)30513-7
- Goodwin, G. M., Aaronson, S. T., Alvarez, O., Arden, P. C., Baker, A., Bennett, J. C., Bird, C., Blom, R. E., Brennan, C., Brusch, D., Burke, L., Campbell-Coker, K., Carhart-Harris, R., Cattell, J., Daniel, A., DeBattista, C., Dunlop, B. W., Eisen, K., Feifel, D., Forbes, M., ... Malievskaia, E. (2022). Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. The New England journal of medicine, 387(18), 1637–1648. https://doi.org/10.1056/NEJMoa2206443

- Gunduz-Bruce, H., Silber, C., Kaul, I., Rothschild, A. J., Riesenberg, R., Sankoh, A. J., Li, H., Lasser, R., Zorumski, C. F., Rubinow, D. R., Paul, S. M., Jonas, J., Doherty, J. J., & Kanes, S. J. (2019). Trial of SAGE-217 in Patients with Major Depressive Disorder. The New England journal of medicine, 381(10), 903–911. https://doi.org/10.1056/NEJMoa1815981
- losifescu, D. V., Jones, A., O'Gorman, C., Streicher, C., Feliz, S., Fava, M., & Tabuteau, H. (2022). Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients With Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). The Journal of clinical psychiatry, 83(4), 21m14345. https://doi.org/10.4088/JCP.21m14345
- Jha, M. K., & Mathew, S. J. (2023). Pharmacotherapies for Treatment-Resistant Depression: How Antipsychotics Fit in the Rapidly Evolving Therapeutic Landscape. The American journal of psychiatry, 180(3), 190–199. https://doi.org/10.1176/appi.ajp.20230025
- Karuna Therapeutics. (2022). Topline results: Phase 3 EMERGENT-2 trial of KarXT in schizophrenia.
- Karuna Therapeutics. (2023). Karuna Therapeutics Announces Positive Results from Phase 3 EMERGENT-3 Trial of KarXT in Schizophrenia.
- Kheirabadi, D., Kheirabadi, G. R., Mirlohi, Z., Tarrahi, M. J., & Norbaksh, A. (2020). Comparison of Rapid Antidepressant and Antisuicidal Effects of Intramuscular Ketamine, Oral Ketamine, and Electroconvulsive Therapy in Patients With Major Depressive Disorder: A Pilot Study. Journal of clinical psychopharmacology, 40(6), 588–593. https://doi.org/10.1097/JCP.000000000001289

- Kheirabadi, G., Vafaie, M., Kheirabadi, D., Mirlouhi, Z., & Hajiannasab, R. (2019). Comparative Effect of Intravenous Ketamine and Electroconvulsive Therapy in Major Depression: A Randomized Controlled Trial. Advanced biomedical research, 8, 25. https://doi.org/10.4103/abr.abr_166_18
- Kirkovski, M., Donaldson, P. H., Do, M., Speranza, B. E., Albein-Urios, N., Oberman, L. M., & Enticott, P. G. (2023). A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain structure & function, 228(3-4), 717–749. https://doi.org/10.1007/s00429-023-02634-x
- Lenze, E. J., Mulsant, B. H., Roose, S. P., Lavretsky, H., Reynolds, C. F., 3rd, Blumberger, D. M., Brown, P. J., Cristancho, P., Flint, A. J., Gebara, M. A., Gettinger, T. R., Lenard, E., Miller, J. P., Nicol, G. E., Oughli, H. A., Pham, V. T., Rollman, B. L., Yang, L., & Karp, J. F. (2023). Antidepressant Augmentation versus Switch in Treatment-Resistant Geriatric Depression. The New England journal of medicine, 388(12), 1067–1079. https://doi.org/10.1056/NEJMoa2204462
- Lorentzen, R., Nguyen, T. D., McGirr, A., Hieronymus, F., & Østergaard, S. D. (2022). The efficacy of transcranial magnetic stimulation (TMS) for negative symptoms in schizophrenia: a systematic review and meta-analysis. Schizophrenia (Heidelberg, Germany), 8(1), 35. https://doi.org/10.1038/s41537-022-00248-6
- Marwaha, S., Palmer, E., Suppes, T., Cons, E., Young, A. H., & Upthegrove, R. (2023). Novel and emerging treatments for major depression. Lancet (London, England), 401(10371), 141–153. https://doi.org/10.1016/S0140-6736(22)02080-3

- Nagele, P., Duma, A., Kopec, M., Gebara, M. A., Parsoei, A., Walker, M., Janski, A., Panagopoulos, V. N., Cristancho, P., Miller, J. P., Zorumski, C. F., & Conway, C. R. (2015). Nitrous Oxide for Treatment-Resistant Major Depression: A Proof-of-Concept Trial. Biological psychiatry, 78(1), 10–18. https://doi.org/10.1016/j.biopsych.2014.11.016
- Nagele, P., Palanca, B. J., Gott, B., Brown, F., Barnes, L., Nguyen, T., Xiong, W., Salloum, N. C., Espejo, G. D., Lessov-Schlaggar, C. N., Jain, N., Cheng, W. W. L., Komen, H., Yee, B., Bolzenius, J. D., Janski, A., Gibbons, R., Zorumski, C. F., & Conway, C. R. (2021). A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Science translational medicine, 13(597), eabe1376. https://doi.org/10.1126/scitranslmed.abe1376
- Paul, S. M., Yohn, S. E., Popiolek, M., Miller, A. C., & Felder, C. C. (2022). Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. The American journal of psychiatry, 179(9), 611–627. https://doi.org/10.1176/appi.ajp.21101083
- Price, R. B., Spotts, C., Panny, B., Griffo, A., Degutis, M., Cruz, N., Bell, E., Do-Nguyen, K., Wallace, M. L., Mathew, S. J., & Howland, R. H. (2022). A Novel, Brief, Fully Automated Intervention to Extend the Antidepressant Effect of a Single Ketamine Infusion: A Randomized Clinical Trial. The American journal of psychiatry, 179(12), 959–968. https://doi.org/10.1176/appi.ajp.20220216

- Rhee, T. G., Shim, S. R., Forester, B. P., Nierenberg, A. A., McIntyre, R. S., Papakostas, G. I., Krystal, J. H., Sanacora, G., & Wilkinson, S. T. (2022). Efficacy and Safety of Ketamine vs Electroconvulsive Therapy Among Patients With Major Depressive Episode: A Systematic Review and Meta-analysis. JAMA psychiatry, 79(12), 1162–1172. https://doi.org/10.1001/jamapsychiatry.2022.3352
- Rosenbrock, H., Desch, M., & Wunderlich, G. (2023). Development of the novel GlyT1 inhibitor, iclepertin (BI 425809), for the treatment of cognitive impairment associated with schizophrenia. European archives of psychiatry and clinical neuroscience, 10.1007/s00406-023-01576-z. Advance online publication. https://doi.org/10.1007/s00406-023-01576-z
- Sachs, G. S., Yeung, P. P., Rekeda, L., Khan, A., Adams, J. L., & Fava, M. (2023). Adjunctive Cariprazine for the Treatment of Patients With Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study. The American journal of psychiatry, 180(3), 241–251. https://doi.org/10.1176/appi.ajp.20220504
- Sage Therapeutics; Biogen. (2022). Investor Webcast on Potential Commercialization of Zuranolone.
- Sauder, C., Allen, L. A., Baker, E., Miller, A. C., Paul, S. M., & Brannan, S. K. (2022). Effectiveness of KarXT (xanomeline-trospium) for cognitive impairment in schizophrenia: post hoc analyses from a randomised, double-blind, placebo-controlled phase 2 study. Translational psychiatry, 12(1), 491. https://doi.org/10.1038/s41398-022-02254-9

- Savitz, A., Wajs, E., Zhang, Y., Xu, H., Etropolski, M., Thase, M. E., & Drevets, W. C. (2021). Efficacy and Safety of Seltorexant as Adjunctive Therapy in Major Depressive Disorder: A Phase 2b, Randomized, Placebo-Controlled, Adaptive Dose-Finding Study. The international journal of neuropsychopharmacology, 24(12), 965–976. https://doi.org/10.1093/ijnp/pyab050
- Scammell, T. E., & Saper, C. B. (2007). Orexins: looking forward to sleep, back at addiction. Nature medicine, 13(2), 126–128. https://doi.org/10.1038/nm0207-126
- Scangos, K. W., State, M. W., Miller, A. H., Baker, J. T., & Williams, L. M. (2023). New and emerging approaches to treat psychiatric disorders. Nature medicine, 29(2), 317–333. https://doi.org/10.1038/s41591-022-02197-0
- Shekhar, A., Potter, W. Z., Lightfoot, J., Lienemann, J., Dubé, S., Mallinckrodt, C., Bymaster, F. P., McKinzie, D. L., & Felder, C. C. (2008). Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. The American journal of psychiatry, 165(8), 1033–1039. https://doi.org/10.1176/appi.ajp.2008.06091591
- Tabuteau, H., Jones, A., Anderson, A., Jacobson, M., & Iosifescu, D. V. (2022). Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. The American journal of psychiatry, 179(7), 490–499. https://doi.org/10.1176/appi.ajp.21080800

- Tseng, P. T., Zeng, B. S., Hung, C. M., Liang, C. S., Stubbs, B., Carvalho, A. F., Brunoni, A. R., Su, K. P., Tu, Y. K., Wu, Y. C., Chen, T. Y., Li, D. J., Lin, P. Y., Hsu, C. W., Chen, Y. W., Suen, M. W., Satogami, K., Takahashi, S., Wu, C. K., Yang, W. C., ... Li, C. T. (2022). Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA psychiatry, 79(8), 770–779. https://doi.org/10.1001/jamapsychiatry.2022.1513
- Zhang, X., Yang, X., Shi, Z., Xu, R., Tan, J., Yang, J., Huang, X., Huang, X., & Zheng, W. (2023). A Systematic Review of Intermittent Theta Burst Stimulation for Neurocognitive Dysfunction in Older Adults with Schizophrenia. Journal of personalized medicine, 13(3), 485. https://doi.org/10.3390/jpm13030485